ISO/ANSI standard high-strength wear-resistant double-pitch conveyor chain

Double Pitch Conveyor ChainsISO Chain No.ANSI Chain No.PitchPmmRoller Diameterd1maxmmWidth Between Inner Platesb1minmmPinDiameterd2maxmmPin LengthInner PlaleDepthh2maxmmPlateThicknessTmaxmmUltimate Tensile StrengthQminkN/IbfAverage Tensile StrengthQokNWeight Per Meterqkg/mLmaxmmLcmaxmmC208AC208ALC2040C204225.407.9515.887.853.961

Featured Products


ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains
Double Pitch Conveyor Chains
ISO Chain No.ANSI Chain No.Pitch
P
mm
Roller Diameter
d1max
mm
Width Between Inner Plates
b1min
mm
Pin
Diameter
d2max
mm
Pin LengthInner Plale
Depth
h2max
mm
Plate
Thickness
Tmax
mm
Ultimate Tensile Strength
Qmin
kN/Ibf
Average Tensile Strength
Qo
kN
Weight Per Meter
q
kg/m
Lmax
mm
Lcmax
mm
C208A
C208AL
C2040
C2042
25.407.95
15.88
7.853.9616.617.812.01.5014. 1/320516.70.50
0.84
C208AHC2040H25.407.957.853.9618.819.912.02.0314. 1/320517.20.65
C208B
C208BL
 25.408.51
15.88
7.754.4516.718.211.81.6018.0/409119.40.55
0.89
C210A
C210AL
C2050
C2052
31.7510.16
19.05
9.405. 0820.722.215.02. 0322.2/504528. 10.78
1.27
C212A
C212AL
C2060
C2062
38. 1011.91
22.23
12.575. 9425.927.718.02.4231.8/722736.81.12
1.61
C212AH
C212AHL
C2060H
C2062H
38. 1011.91
22.23
12.575. 9429.231.618.03. 2531.8/722741.61.44
2.07
C2I6A
C216AL
C2080
C2082
50. 8015.88
28.58
15.757. 9232.736.524.03. 2556.7/1288665.72.08
3.12
C216AH
C216AHL
C2080H
C2082H
50. 8015.88
28.58
15.757.9236.239.424.04.0056.7/1288670.02.54
3.58
C220A
C220AL
C2100
C2102
63. 5019.05
39.67
18.909. 5340.444.730.04.0088.5/20114102.63.01
4.83
C220AH
C220AHL
C2100H
C2102H
63.5019.05
39.67
18.909. 5343.646.930.04. 8088.5/20114112.43.56
5.38
C224A
C224AL
C2120
C2122
76. 2022.23
44.45
25.2211. 1050.354.335.74. 80127.0/28864147.34.66
7.66
C224AH
C224AHL
C2120H
C2122H
76. 2022.23
44.45
25.2211. 1053.557.535.75.60127.0/28864160.95.26
8.26
C232A
C232AL
C2160
C2I62
101.6028.58
57.15
31.7514. 2764.869.647.86.40226.8/51545278.98.15
13.00
C232AH
C232AHL
C2160H
C2162H
101.6028.58
57.15
31.7514. 2768.273.047.87. 20226.8/51545285.89.06
13.84
 


ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

CONSTRUCTION OF THE CHAIN


Two different sizes of roller chain, showing construction.
There are two types of links alternating in the bush roller chain. The first type is inner links, having two inner plates held together by two sleeves or bushings upon which rotate two rollers. Inner links alternate with the second type, the outer links, consisting of two outer plates held together by pins passing through the bushings of the inner links. The "bushingless" roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing one step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.



LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an abrasive paste that will compound wear on chains. This problem can be circumvented by use of a "dry" PTFE spray, which forms a solid film after application and repels both particles and moisture.




VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then one of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be "siamesed"; instead of just two rows of plates on the outer sides of the chain, there may be three ("duplex"), four ("triplex"), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has one pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) "riveted" or mashed on the ends. These pins are made to be durable and are not removable.



WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the two sprockets, since it is always the smaller one that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

 


ASME/ANSI B29.1-2011 Standard Sizes Roller Chain
M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the two sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.



CHAIN STRENGTH

The most common measure of roller chain's strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain's fatigue strength. The critical factors in a chain's fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain's tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

 

WHY CHOOSE US 

1.     Reliable Quality Assurance System
2.     Cutting-Edge Computer-Controlled CNC Machines
3.     Bespoke Solutions from Highly Experienced Specialists 
4.     Customization and OEM Available for Specific Application
5.     Extensive Inventory of Spare Parts and Accessories
6.     Well-Developed Worldwide Marketing Network 
7.     Efficient After-Sale Service System

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve worldwide range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

 

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

ISO/ANSI Standard High Strength and Wear Resistance Double Pitch Conveyor Chains

 
 

Contact us

Please feel free to give your inquiry in the form below We will reply you in 24 hours